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Martensitic transformations: first-principles calculations
combined with molecular-dynamics simulations?
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Abstract. Results are presented of first-principles total-energy calculations and molecular-dynamics simu-
lations of structural transformations in magnetic transition metal alloys like Fe1−xNix. While first-principles
calculations allow to identify those structures having the lower total energy, molecular-dynamics simula-
tions can be used to trace out the dependence of the transformation on temperature, composition, con-
centration of defects etc. We have used the method of the semi-empiric embedded-atom potential in the
molecular-dynamics simulations which yields remarkable good results for the structural changes.

PACS. 75.50.Bb Fe and its alloys – 81.30.Kf Martensitic transformations – 02.70.Ns Molecular dynamics
and particle methods

1 Introduction

Research on martensitic phase transformations [1] in fer-
rous alloys covers a period of more than 100 years and has
led to some understanding of the kinetics of the transfor-
mation (for a recent review see [2]). Martensitic transfor-
mations occur in alloys of different metallic elements. Usu-
ally the alloys are substitutional mixtures, where atoms of
the host element are partially replaced by different kinds
of metal atoms. This can lead to reduced or extra elec-
tronic charge. In the Hume-Rothery alloys this is respon-
sible for the appearance of a definite crystal structure if
the ratio of the valence electron number to atom number
gets a certain value. But band filling, screening and atomic
disorder effects connected with the extra charges do not
only lead to martensitic transitions: They are responsible
for a whole class of phenomena like precipitation, spinodal
decomposition (and ordering) and other phase separation
phenomena. The task of theory is to give a unified descrip-
tion of the electronic origin. In spite of many systematic
theoretical investigations (for example, see [3]) this prob-
lem has not been completely solved. In this article we try
to address a few fundamental questions associated with
martensitic transformations in ferrous alloys with the help
of first-principles calculations combined with molecular-
dynamics simulations.

The martensitic phase transformation and structural
trends of Hume-Rothery alloys are rather well understood.
They are driven by the van Hove singularities in the den-
sity of states arising from band gaps at specific Brillouin
zone boundaries. Is the new crystal structure for a critical
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electron number so that the new Brillouin zone can accom-
modate all electrons, a large energy gain can be expected.
However, detailed calculations show that in addition the
renormalization of electronic properties due to the loga-
rithmic singularity in the slope of the Lindhard function
at q = 2 kF is important. Since this singularity is driven by
the ratio of valence electron number to atom number, the
Hume-Rothery alloys are called electron phases. In Hume-
Rothery alloys the phase transition is of weakly first order
from a high-temperature less-close packed structure to a
low-temperature close-packed one.

The hysteresis associated with the transformation and
the influence of atomic disorder or lattice defects on the
width of the hysteresis are less well understood. Sys-
tematic first-principles investigations have shown that in
many Hume-Rothery alloys compositional short-range or-
dering occurs which is again related to details of the Fermi
surface touching the Brillouin zone. This determines the
behavior of the atomic pair correlation function in an es-
sential way [4,5]. Atomic ordering effects seem also to
be important for the shape-memory alloys which usually
show stoichiometric order, and for metals showing rubber-
like behavior [6]. Rubber-like behavior seems to be caused
by atomic short-range ordering of atoms or vacancies (ag-
ing process) leading to superelastic behavior.

There is some qualitative understanding but no micro-
scopic theory of kinetic details of the martensitic transfor-
mation like nucleation of martensite at the surface or in
the bulk at nucleation centers, concentration of marten-
sitic embryos in the melt, role of diffusion processes via
vacancies etc.

Structural transformations in ferrous alloys, where
magnetic long-range order and spin fluctuations interfere,
are less well understood. The experimental observation
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is that in alloys with a ferromagnetic ground state, the
less-close packed crystal structure can be stabilized at low
temperatures. Hysteresis, supercooling, and superheating
effects are usually more pronounced in the magnetic alloys.
There are only a few stoichiometrically ordered phases.
The element iron itself is interesting, since it can exist as
bcc (α, δ), fcc (γ) or hcp (ε) phase. Iron-based alloys in-
cluding Fe-C, Fe-Ni, Fe-Mn etc. usually exhibit the same
richness of phases but also show systematic changes due
to changes in the valence-electron number. Ab initio cal-
culations of the total energy and magnetic moments of
the bcc, fcc and hcp phase of iron as a function of volume
explain the ferromagnetic bcc → paramagnetic hcp tran-
sition around 10 GPa. Under pressure the d band widens
and the density of states at the Fermi energy εF decreases
until the Stoner criterion for ferromagnetism is no longer
fulfilled [7]. There is also a very strong volume depen-
dence of the fcc and hcp moments near the normal atomic
volume. The stability of the bcc structure at low temper-
atures is due to long-range ferromagnetic order.

The physical picture at finite temperatures is less clear.
It has been argued very early that the occurrence of the
γ-phase at higher temperatures is driven by large ferro-
magnetic spin fluctuations as first assumed by Weiss [8].
Interpretation of the behavior of the specific heat of the
α- and γ-phase leads to the same conclusion [9]. At still
higher temperatures the return to the bcc-like δ-phase is
assumed to arise from entropy contributions of the softer
δ-phase phonons or from loss of magnetic short-range or-
der with increasing temperature [10]. The assumption of a
magnetically driven α→γ transition with increasing tem-
perature has recently been questioned [11]. Investigation
of the phonon dispersion of α-Fe reveals strong softening of
the entire T1[ξξ0] and T1[ξξ2ξ] branch when approach-
ing the α → γ transition. The eigenvectors of these
phonons are in the direction of displacements needed for
the γ-phase. This has been interpreted by the authors
as a dynamical precursor for the martensitic transforma-
tion. The data also suggest that the high-temperature
phase is mainly stabilized by the increase in vibrational
entropy, the entropy difference being ∆Sαγvib = 0.142
kB/atom = 0.887×10−3 mRy/atom K or T∆Sαγvib = 1.05
mRy/atom at T = A3 = 1184 K which is larger than the
value extrapolated from [9] giving T∆Sαγvib/mag = 0.606

mRy/atom. Thus the controversy of what stabilizes the
high-temperature γ-phase of elemental iron needs further
inspection. The transition is not completely driven by the
entropy of ferromagnetic spin fluctuations alone; the vi-
bronic part of the entropy might be of equal importance
which would confirm the conjecture of Petry [11].

Further problems arise when we try to describe the
martensitic transformation on a microscopic level. While
first-principles total-energy calculations give reliable re-
sults for the energy difference between different crystal
structures at zero temperature for elemental iron and Fe-
Ni alloys [12–14] or alkali elements [15,16]), and also allow
to simulate the structural transformation from the γ→α
structure along the Bain path [17], the continuation to
finite temperatures in form of first-principles molecular-

dynamics simulations is still restricted to so small numbers
of atoms that structural changes can not be simulated.

Also unsolved is the question of how to incorpo-
rate magnetism at finite temperatures. Therefore, in the
present work we have combined first-principles total-
energy calculations and semi-empiric molecular dynamics
simulations based on the embedded atom method intro-
duced by Daw and Baskes [18]. The latter method allows
to handle a sufficiently large number of atoms and to sim-
ulate premartensitic behavior and the martensitic trans-
formation [19–22].

Magnetism can be indirectly dealt with by using poten-
tial functions which reproduce the correct elastic behavior
of the magnetic alloys at low temperatures. The simula-
tions then allow to study the growth of martensite, for
example, in thin Fe-Ni films with notch-like defects which
facilitate martensitic nucleation at the surface [23]. In this
paper we will discuss a few characteristic results for ferro-
magnetic and antiferromagnetic Fe and Fe-Ni alloys and
nonmagnetic Ni-Al alloys.

2 Results of first-principles total-energy
calculations

We first discuss results for elemental α- and γ-iron. Re-
sults of first-principles calculations of the total energy of
the ferromagnetic (FM) and antiferromagnetic (AF) phase
as function of the volume per atom are shown in Figure 1.
The results differ from results of previous calculations with
non full-potential methods [25] as discussed in [26]. The
calculations were done by using the full-potential WIEN95
code [24]. In all calculations the scalar relativistic version
and the generalized gradient approximation (GGA II) was
used. The k-mesh used corresponds to 250 k-points in the
irreducible wedge in the case of bcc Fe, to 145 k-points in
the case of FM fcc Fe, to 150 k-pints in the case of hcp Fe,
and to 315 k-points in the case of AF fcc Fe. The radius of
the muffin-tin sphere was consistently chosen to be 2.2 a.u.
Inside the muffin-tin sphere potential and charge density
were expanded up to L = 6. For the interstitial region we
have used a plane-wave cut-off ofRmt×Kmax = 9.0 which
has proved to be accurate enough for d-orbitals. The equi-
librium volumes were obtained from fits to Murnaghan’s
equation of state. In the case of AF order we considered
only the AF I structure which consists of alternating layers
of up and down spins.

Figure 1 shows that (i) FM α-Fe has the lowest ground-
state energy, (ii) next lowest in energy would be nonmag-
netic (NM) hcp Fe, (iii) γ-Fe would be AF but with close
in energy lying FM low-moment state (at low volume) and
high-moment state (at high volume) as well as many non-
collinear states which have been omitted from Figure 1.
There is also a tendency of γ-Fe to form a spin glass.
This competition of many different magnetic states in γ-
Fe is due to the behavior of the exchange integral which
is small and has contributions with oscillating sign from
many neighbor shells (kind of RKKY-like interaction me-
diated by the s and p electrons). These findings agree with



P. Entel et al.: Martensitic transformations 381

64 68 72 76 80 84 88 92

V/atom (a.u.)3

0

6

12

18

24

30

36

42

48

E
to

t
(m

R
y/

at
om

)

Fig. 1. Total energy of bcc, fcc and hcp iron as function of
the atomic volume relative to the ground state energy of ferro-
magnetic bcc iron. Dotted curves refer to the bcc phase, solid
curves to the fcc phase and the dashed curve to the hcp phase.
Squares denote FM, circles antiferromagnetic (AF I), and dia-
monds nonmagnetic solutions.
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Fig. 2. Calculated Curie temperatures and magnetic moments
per atom (circles and diamonds, respectively) of Fe1−xNix in
comparison with experimental data (solid lines). Ms, Mf , As
and Af are start and final temperatures of the martensitic and
austenitic transformation. Also shown are the stability ranges
of the bcc and fcc structure and the Invar region.

experimental data and the complex phase diagram of Fe-
Mn and Fe-Ni (see Fig. 2) alloys on the Fe-rich side. The
question is whether we can draw some reliable conclusions
from the zero-temperature calculations about the mag-
netic behavior and structural α→γ and subsequent γ→δ
transformation at high temperatures. This is indeed possi-
ble if we analyse total energies not only as a function of the
volume per atom but also as a function of the magnetic
moment per atom. This leads to magnetic binding sur-
faces usually evaluated by the fixed-spin moment method.
This is a very time consuming calculation if we use the
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Fig. 3. Binding surface of Fe3Ni as obtained from total en-
ergy FLAPW calculations. Contour lines are at 2 mRy/atom
intervals. The ground state is FM separated from the NM sad-
dle point by 10 mRy and from the AF minimum by 6 mRy
(the lower part with negative moments is the AF region). Also
shown are the H = (∂E/∂M)V = 0 and P = −(∂E/∂V )M = 0
lines.

full-potential method. Therefore, we have used the data
in Figure 1 and corresponding data for Fe3Ni to extract
the surfaces. This is possible because the data in Figure 1
correspond to energies on the H = (∂E/∂M)V = 0 line,
where H is a ficticious external field which allows to fix
the magnetic moment per atom. For briefness we omit the
corresponding binding surface of γ-Fe and present results
only for γ-Fe3Ni which is of special interest because of the
interference of magnetic and structural phase transitions
and Invar anomalies.

Figure 3 shows that the ground state of γ-Fe3Ni is FM
lying 6 mRy (1 mRy ≈ 158 K) below the AF minimum.
But let us first discuss the corresponding surface of γ-Fe
which is slightly different from Figure 3. Here it is the AF
state which is lowest in energy being separated by a few
mRy from the shallow local FM minima corresponding to
a low moment at low atomic volume and a high moment
at a larger volume in agreement with the data in Figure 1.
This also agrees with the experimental observation that γ-
Fe has an AF ground state at appropriate lattice spacing
[27,28].

Corresponding energy surfaces for γ-Fe and γ-Fe3Ni
can also be evaluated at finite temperatures by retaining
fluctuations in Gaussian approximation [29–32]. For exam-
ple, this allows to speculate about the finite-temperature
behavior of γ-Fe: The AF solution will gradually disappear
with increasing temperature, leaving at higher tempera-
tures dominating FM spin fluctuations which lead to an
enhanced atomic volume and anti-Invar behavior. These
FM spin fluctuations are easy to excite and do not cost
much energy. The spin fluctuations (in addition to the
lattice vibrations) will also help to stabilize the γ-phase
with respect to the α-phase at elevated temperatures in
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the absence of long-range FM order in accordance with
the α→ γ phase transformation with increasing temper-
ature in elemental Fe. This scenario is in agreement with
Hasegawa’s model calculation of the phase diagram of
iron [10].

We can also model this α → γ transition at zero
temperature by using ab initio calculations. They show
that the transition is associated with a substantial charge
transfer from t2g orbitals to eg orbitals. The consequences
of such a charge transfer would result in a lower atomic
volume right after the transition in the γ-phase. This is
indeed observed in experiments. This kind of charge trans-
fer also occurs in the Fe-Ni alloys and is responsible for
the Invar anomalies [33].

When discussing alloy systems, it is important to know
whether they have more or less valence electrons than el-
emental iron. Adding extra d electrons like in the Fe-Ni
Invar alloys destabilizes the bcc structure leading to Invar
behavior in the γ-phase. This instability has two aspects,
one is associated with the extra charge [33], the other
with lattice vibrational arguments (for example, in bcc Ni
the shear modes have negative squared phonon energies
[21] which also helps to destabilize the low-temperature
α-phase of the FeNi alloys).

We now discuss the binding surface of Fe3Ni in Fig-
ure 3 (obtained from the data set in Ref. [34]). There
still is an AF solution, but it is now the FM state which
is more stable. Due to the specific form of the surface,
we expect strong admixture of FM and AF spin fluctua-
tions at temperatures lower than the Curie temperature.
Atomic disorder will further contribute to competing spin
fluctuations. The Invar instability itself is related to these
fluctuations which couple strongly to phonons and local
eg ⇀↽ t2g charge fluctuations [33]. Because of the specific
form of the surface, we expect that FM spin fluctuations
will dominate at temperatures higher than the Curie tem-
perature Tc in much the same way as in γ-iron. In this
way we can explain Invar-like behavior for T < Tc and
anti-Invar behavior for T > Tc in the Fe-Ni alloys.

When the number of d electrons is reduced like in the
Fe-Mn alloys, the ground state of the γ-phase becomes AF
leading to anti-Invar behavior above the Néel temperature
as in the case of γ-iron. Both alloy systems, Fe-Ni as well
as Fe-Mn, are disordered and have lower martensitic tran-
sition temperatures than elemental iron. The transition
temperature decreases further with increasing concentra-
tion of Ni or Mn atoms.

The strong concentration dependence of the marten-
sitic transition temperature is a longstanding problem.
Figure 2 shows the strong variation of the martensitic and
austenitic transition temperatures with concentration for
the Fe-Ni system. Also large supercooling and superheat-
ing effects can be observed. It has recently been argued
that the large dependence on concentration could be as-
sociated with strong mass-disorder scattering of phonons
[35] which, however, in the case of Fe-Ni might be doubt-
ful since Fe and Ni have practically the same atomic mass.
Disorder scattering occurs here in the minority-spin chan-
nel because the energies of the 3d-minority-spin states of

Fe and Ni are different. This leads to strong disorder ef-
fects in the minority-spin density of states curve. In order
to gain more insight into the dependence on concentra-
tion, we have performed first-principles total-energy cal-
culations by using the KKR-CPA method for the disor-
dered alloys [14]. In addition the FLAPW/GGAII method
has been used to calculate energy differences for a few
stoichiometric cases. The resulting dependence of energy
differences on concentration agrees qualitatively with the
behavior of transition temperatures for the structural
transformation in Figure 2. This is remarkable, since it
proves that the strong variation, for example, of M0

(which is the thermal equilibrium martensitic transition
temperature, where the free energies of the α- and γ-phase
cross) with concentration is an intrinsic effect and asso-
ciated with the concentration dependence of the energy
barrier between the α- and γ-phase. This energy differ-
ence is gained by martensitic nucleation in parent austen-
ite, whereby the gain in energy has to overcome the energy
cost associated with increasing stress during the growth of
the nucleus. This partially solves the longstanding prob-
lem of what determines the concentration dependence of
the martensitic transition temperature in ferrous alloys.

The remaining question to be answered is, what is re-
sponsible for the strong concentration dependence of the
energy difference between the α- and γ-phase? This brings
us back to the observation that it is FM order which
stabilizes the bcc structure at low temperatures. First-
principles calculations for α-Fe and Fe-Ni actually prove
that it is the magnetic contribution to the energy which
stabilizes the less-close packed bcc structure at zero tem-
perature [14]. At high temperatures this is no longer ev-
ident as discussed in the introduction. We thus face the
interesting situation that we can have different stabilizing
mechanisms acting at different temperatures in the Fe-Ni
alloy system: At low T it is the magnetic pressure which
stabilizes the bcc structure; at high T it is the vibrational
entropy and strong FM spin fluctuations which stabilize
the fcc structure.

The origin of the strong concentration dependence of
the energy difference between the fcc and bcc structure
is at low temperatures connected with a subtle interplay
of different magnetic ordering tendencies and related oc-
cupation of antibonding and nonbonding d-orbitals. This
brings us back to the binding surfaces discussed before.
Adding Ni to FM α-Fe which has large exchange splitting
between minority-spin and majority-spin states, destabi-
lizes the bcc structure because extra d-electrons from Ni
mainly go to the nonbonding states. This leads to reduced
partial electronic pressure, to a decrease of the volume,
and finally to FM order in the fcc structure at still higher
concentrations of Ni. At finite temperatures the contribu-
tions of phonons to the entropy can not be neglected and
might be of the order of the magnetic contribution.

The forestanding discussion shows that the change
of electronic properties with Ni concentration in the Fe
matrix plays an important role. However, is this suffi-
cient to explain the martensitic transformation? At fi-
nite temperatures the coupling of electrons to phonons
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and resulting phonon softening due to Fermi-surface nest-
ing will help to induce a structural transformation in the
Fe-Ni alloys [13,14,26,34,36–38]. Of special interest is in
this case the interplay of magnetic order. Evaluation of
electron-phonon matrix elements show that it is mainly
the coupling of minority-spin electrons to phonons which
is responsible for phonon softening effects going hand in
hand with the decrease of the minority-spin density of
states at the Fermi energy while passing from the fcc to
bcc structure along the Bain path. This leads in the bcc
structure of Fe-Ni alloys to remarkable softening of the
T1[110] phonon with increasing temperature as observed
in the molecular-dynamics simulations [21]. The softening
is most pronounced at the zone boundary and at the tem-
perature, where the simulations show a sudden transition
from bcc to fcc. However, the phonon does not completely
soften at the transition. This agrees with the behavior of
the corresponding phonon in α-Fe as observed by neutron
scattering [11]. Similar discussion of Fermi-surface nesting
and softening of transverse phonons as dynamical precur-
sor of the austenitic or martensitic transformation in Ni-Ti
and Ni-Al can be found in [39–41].

Another problem is connected with hysteresis effects
which are difficult to deal with in the ab initio calculations.
It is known that the transformation starts with the forma-
tion of lenticular or needle-like nuclei of martensite around
defects in the parent phase. These nuclei usually grow in
size into easy directions until they meet other marten-
sitic grains. The magnitude of supercooling, superheating
and hysteresis effects is usually attributed to the degree
of difficulty of the system to accommodate the continuous
nucleation production and the difference of shape between

the two phases. It is out of scope of the present work to dis-
cuss in detail the different contributions to the free energy
in the two phases due to growing martensitic or austenitic
palets. However, molecular-dynamics simulations of the
transition in Fe-Ni in the presence of impurities (vacan-
cies) discussed below, show that the temperature range
of supercooling and superheating is not arbitrary or a
complex function of the concentration of various lattice
defects, but is characteristic for the specific alloy under
consideration [23,38]. Also the hysteresis depends strongly
on the energy difference between the fcc and bcc structure.
Defects will further broaden the transition; but they are
not originally responsible for the structural transforma-
tion as a phase transition of first order.

3 Results of molecular-dynamics simulations

With increasing computer power molecular-dynamics sim-
ulations have become a standard method of statistical me-
chanics. For example, they have been used successfully in
investigations of dynamical properties, spinodal decompo-
sition and pattern formation of mixtures of liquids. The
low density of fluids allows to cover a time scale which
is sufficient for the evaluation of the time dependence of
the velocity-velocity correlation function. Integration over
time then yields reliable values for diffusion constants.
Even growth exponents can be predicted which agree with
experiment. Similar simulations in solids give much less
information since simulation times are restricted to recip-
rocals of typical phonon frequencies. This means that seg-
regation effects like spinodal decomposition have not yet
been simulated successfully. Therefore, it is remarkable
that transformations of solids bearing traces of spinodal
decomposition like the martensitic transformation, can be
investigated with the help of molecular-dynamics simula-
tions. In contrast to liquids, where simple Lennard-Jones
potentials yield accurate results, it is important that one
uses more refined many-body interatomic potentials for
the solids. Here the embedded-atom method [18] has been
used with success to construct the potentials.

Simulation of the martensitic transformation at finite
temperatures is possible by using a thermostat [42] and a
fluctuating volume box [43]. So different crystallographic
structures can be simulated by using the same N-body in-
teratomic potential in the different phases. In the following
we will discuss a few aspects connected with molecular-
dynamics simulations of the austenitic and martensitic
transformation in Fe-Ni and Ni-Al alloys. Figure 4 shows
results of simulations of the phase diagram of Fe-Ni. There
is some disagreement with the experimental phase dia-
gram on the Fe-rich side because magnetism is not taken
into account in an optimal way in the simulations. But
supercooling and superheating effects are clearly visible.

It is of interest to discuss briefly molecular dynamics
simulations of martensitic transitions in other alloy sys-
tems. Analysis of the structural transition in Ni-Al [44,45]
has shown that the transition is first order, entropy driven,
and follows the Zener picture [46] according to which the
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Fe80Ni20 as obtained by molecular-dynamics simulations.

transformation is due to the competition of internal en-
ergy and entropy between the austenitic and martensitic
phase. Entropy driven means that it is the higher vibra-
tional entropy of the austenitic phase which is respon-
sible for the transition when increasing the temperature
with a considerable increase of the mean square displace-
ment of the atoms in the high-temperature phase. For ex-
ample, the entropy change for the composition Ni64Al36

is T∆S = 0.26 mRy/atom at the transition. With re-
spect to disorder, the entropy differences between different
atomic configurations are very small in the Ni-Al alloys.
Therefore, the hypothetical equilibrium martensitic trans-
formation temperature of the Ni-Al alloys, M0, follows the
difference of the (internal) energy of the various atomic
configurations [44]. This allowed to describe the influence
of disorder on the martensitic transformation temperature
in a coherent way.

It is interesting to check whether this kind of picture
for the Ni-Al alloys is also valid in the case of magnetic
alloys. If we assume that for small changes in concen-
tration the entropy differences between the fcc and bcc
phase will not drastically change, then M0(x) should scale
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Fig. 7. Entropy as a function of temperature of Fe80Ni20 as
obtained by molecular-dynamics simulations.

with |Efcc−Ebcc|(M0, x) ∼M0(x). The calculations show
that corresponding energy differences in Fe-Ni evaluated
at zero temperature, indeed scale with M0(x), although
we do not know the experimental M0(x) exactly.

We now discuss results for the thermodynamic poten-
tial of Fe-Ni. The molecular dynamics simulations have
been performed for the composition Fe80Ni20. Results for
the free energy in Figure 5 show that the structural change
is of first order. Results for the free energy of Ni-Al behave
in much the same way [44]. The crossing of the free en-
ergies defines the equilibrium transition temperature M0

which is different from Ms,f and As,f (martensitic and
austenitic start and final temperatures, respectively).

We have already discussed experimental results for the
entropy of elemental iron [9] which yield an entropy jump
at A3 of the order of 0.606 mRy/atom which must be com-
pared with the vibrational value of 1.05 mRy/atom [11].
How does this value compare with results of molecular-
dynamics simulations of Fe-Ni alloys? Figures 6 and 7
show results for the temperature variation of the poten-
tial energy and the entropy of Fe80Ni20, respectively (the
kinetic energy has been subtracted since it is the same in
both phases). As in the case of Ni-Al, the variation of TS
is much larger than the variation of the potential energy
which is a hint that the transition is driven by the entropy.
The magnitude of the entropy change at M0 is of the order
of T∆S = 1 mRy/atom. Although the transition temper-
ature M0 is much smaller than A3 of elemental Fe, the
value for the entropy change agrees remarkably well with
the experimental value given in reference [11] and less well
with the value obtained from the specific heat data which
is smaller. The entropy change in the simulations is mostly
of vibrational origin. A magnetic part can not be split off,
since magnetism enters the simulations only by fitting the
embedded-atom potentials used in the simulations so that
the elastic properties of the bcc phase is in agreement with
experimental data. However, we may conclude that both,
vibronic and magnetic contributions to the free energy will
be important and determine the martensitic transition at
A3 in elemental Fe and in the Fe-Ni alloys, i.e. the vibra-
tional excess entropy of the fcc structure due to large mean
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Fig. 8. Mean potential energy of Fe80Ni20 for the bcc and fcc structure as a function of the Wigner-Seitz radius at different
temperatures. The Wigner-Seitz radius at equilibrium is marked for each structure by arrows. The equilibrium does not coincide
with the minimum of the individual energy curve, since due to the missing entropy, the energy does not correspond to the free
energy. The bcc structure is marked by circles, the fcc structure by squares. With increasing energy the difference in potential
energy between fcc and bcc structure decreases until they approximately coincide at the structural transition (≈ 700 K).

square amplitudes of the atomic vibrations is at least as
important as the magnetic excess entropy due to strong
FM spin fluctuations with large mean square amplitudes.
For a discussion which emphasizes more the importance
of magnetic fluctuations see [47].

Finally we would like to show, how the structural
transformation is achieved in the molecular dynamics sim-
ulations. This can be done by inspecting the behavior of
the volume dependence of the free energy as a function
of temperature and by following on a microscopic level
the creation of twin boundaries and stacking faults due to
the structural transformation. Since the evaluation of the
entropy is very time-consuming in the simulations, only
results for the potential energy are shown in Figure 8. In

order to obtain these results, simulations had to be car-
ried out in the (N,V, T ) ensemble (constant particle num-
ber, volume and temperature) while simulations for the
structural transformation must be done in the (N,P, T )
ensemble. Figure 8 shows that the structural transforma-
tion from α→ γ at As ≈ 700 K occurs at a volume for
which the potential energy of the fcc phase is lower than
in the bcc phase. So it is finally the energy barrier of the
potential energy which must be overcome, although the
transition is driven by the entropy.

Along with the structural transformation from bcc to
fcc in the Fe-Ni alloys upon heating, twin boundaries and
stacking faults are created. Figure 9 shows results for the
Fe65Ni35 alloy. The following orientational relationships
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Fig. 9. Transformation of the bcc structure of Fe65Ni35 (upper
panel) to the fcc structure (lower panel) by forming twins and
stacking faults. Fe atoms are black, Ni atoms are grey. Paper
plane is (100) for bcc and (110) for fcc, respectively.

can be observed: (011)bcc ≈ (111)fcc, [001]bcc− [001]fcc ≈
9◦ being close to experimental values. A detailed anal-
ysis of the influence of different kinds of defects on the
transformation and growth processes of embryos and fi-
nal nucleation is under current investigation. Although
at present defects are limited to vacancies, free surfaces
and surfaces with big notch-like defects, there are promis-
ing results for growth processes of martensite under the
influence of these defects and under the influence of ad-
ditional external strain. For example, investigations have
been done with respect to superelastic behavior of thin Fe-
Ni films and shape-memory effects in Fe-Ni bulk systems
[38]. Here we cite the main results. Thin Fe-Ni films with
composition Fe70Ni30 have initially been prepared in the
fcc structure at low temperatures. In order to facilitate
the nucleation of martensite, a large notch-like defect has
been prepared in the film plane. After thermalizing ten-
sile stress has been applied, leading to 6% expansion of
the film and the appearance of typical martensitic texture
which gradually disappears if external forces are swichted
off and the system is allowed to relax. Elemental Ni, for

example, behaves completely different in the simulations.
Here we observe fracture when tensile stress is applied,
with a crossover from brittle fracture at low temperatures
to ductile fracture as plastic shear with emission of dis-
locations at high temperatures, in agreement with exper-
iment. This proves that (apart from the poor treatment
of magnetism) the embedded atom potentials used for the
description of the Fe-Ni alloys are very accurate. One-way
shape memory effects have also been observed during the
simulations [38]. If we heat Fe80Ni20 in the simulations
up to 700 K, the alloy transforms to the fcc structure.
We then stress the system at 800 K till an expansion of
12% is reached. By switching off the load and subsequent
cooling down to 200 K, the system gains back its origi-
nal bcc structure practically without formation of addi-
tional defect structures. However, in order to achieve this,
a very high concentration of vacancies of the order of 2%
is needed. Here further simulations are needed in order
to clarify the shape memory effect in relation to defects
at fixed positions required for nucleation of martensite at
always the same local sites.

4 Summary

In this paper we have shown that ab initio full-potential
calculations and semi-empiric molecular-dynamics simu-
lations can be used to clarify various aspects of martensitic
transformations. The ab initio calculations have shown
that magnetic order is able to stabilize less-close packed
crystal structures at low temperatures like α-iron. Iron
alloys in the close-packed fcc or hcp structure are of spe-
cial interest because of competing magnetic interactions.
In particular the Invar effect is related to these competing
interactions. Its origin can be traced back to charge trans-
fer effects between orbitals of different spin and differ-
ent bonding character. The stabilizing effect due to mag-
netic order becomes less effective at high temperatures
because of the growing influence of vibrational entropy.
Here molecular-dynamics simulations are an appropriate
tool to obtain information about the structural transfor-
mation and the temperature variation of thermodynamic
potentials.

Appendix

We give here a brief account of some details related to the
molecular-dynamics simulations. We used the embedded-
atom method, where the total energy is written as the
sum of an embedding function and a screened Coulomb
potential,

Etotal =
∑
i

Fi(ρi) +
1

2

∑
i

∑
j 6=i

φij(rij) (1)

with rij = |ri − rj |. The index i stands for the lattice site
and the kind of atom at that site. We have used the proce-
dure of Daw and Baskes [18] which consists of construct-
ing the electronic charge density of the solid at site i from
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spherical symmetric charge densities of the surrounding
atoms ρi =

∑
j 6=i ρat,j(rij). For details of obtaining ρat,j

from orbitals of valence electrons of free atoms see refer-
ence [18]. The function φij(r) is given by 2Zi(r)Zj(r)/r
(the factor 2 is due to using Bohr’ radius a0, elementary
charge e and Rydberg for measuring distance, charge and
energy). The embedding functions Fi = FFe, FNi and the
effective charges Zi = ZFe, ZNi are cubic spline functions.
The parameters of these functions have been obtained by a
fit to experimental data of the lattice constants, sublima-
tion energies, elastic constants C11, C12, and C44, vacancy
formation energies, and some selected phonon frequencies
of pure Fe and Ni. The parameters including their deriva-
tives can be found in reference [21] and will not be listed
here again. Magnetism is accounted for only in so far as
the fit is made to experimental materials parameters of
the pure elements Fe and Ni at low temperatures.

Standard molecular-dynamics simulations were then
performed employing the verlet velocity algorithm with
a time step of 1.5 fs and periodic boundary conditions.
In the simulations of Fe65Ni35, the initial configuration
consists of 4394 atoms, arranged on an ideal lattice of
13 × 13 × 13 bcc cells. Several such configurations were
prepared in order to test the influence of different atomic
disorder on the austenitic transformation. With these con-
figurations, simulations were done in the (N,P, T ) ensem-
ble generated by the Nosé-Hoover thermostat method [42]
combined with the Parrinello-Rahman scheme [43]. Upon
heating the bcc structure transforms to the austenitic fcc
structure with formation of twin boundaries and stack-
ing faults as shown in Figure 9. At each temperature a
sufficient number if MD steps (500–1000) has been per-
formed to allow the system to relax. The transformed lat-
tice shown in Figure 9 is not an instant snap shot. Since
the atoms move during the simulation, an average has to
be taken over many simulation steps (5000) at one and
the same temperature. This averaging eliminates to some
degree the displacements from ideal fcc lattice positions.
Also atoms in Figure 9 are not the same size (the size of
the atoms in Fig. 9 is only guide to the eyes). The type
of crystal structure in the simulations is obtained from a
calculation of the atomic pair distribution function.

The calculation of free energies of alloys from the MD
simulations is problematic, since integration over small
portions of the internal energy has proven to be not a
useful tool due to the oscillatory behavior of E in the sim-
ulations. One way to evaluate free energies is to introduce
an effective Hamiltonian Heff (λ) = (1 − λ)H0 + λH1 =
H0 + λ∆H, where H0 is the Hamiltonian of the actual
system and H1 corresponds to the reference system. The
free energy difference can then be obtained by the ther-
modynamic path which connects both systems,

∆F =

∫ 1

0

dλ
∂Heff (λ)

∂λ
· (2)

This method has recently been used to evaluate the free
energy of the different phases of Sn [48], whereby the in-
tegral was computed as time average over a time interval
much longer than the vibrational period. This requires

many MD simulations. The method can also be used to
discuss the vibrational entropy differences between or-
dered and disordered structures like, for example, in Ni3Al
[49]. Another method, which has recently been applied to
Ni3Al, is to use the quasi-harmonic approximation for the
free energy [50].

We have used a method, where an approximate free
energy can be obtained from a single MD simulation [51].
This is possible if the variational principle of the free en-
ergy F ≤ F0 + 〈V −V0〉0 is used, where the average is with
respect to a trial potential V0 with a known free energy F0.
This can be used to obtain the entropy in the form S ≤ S0

with S0 ∝ ln(detC), where Cij = 〈xixj〉 − 〈xi〉〈xj〉 is the
correlation matrix (i, j = 1 . . . 3N). Both methods have
their disadvantages. The former method requires an as-
sumption of how λ varies with time; the latter method
requires the evaluation of the correlation matrix and one
does not really know how big the error is. The equilibrium
transition temperature M0 obtained by the approximative
method (by comparing the free energies of the bcc and fcc
phase, see Fig. 5) must lie between the actual transition
temperature for the austenitic and martensitic transfor-
mation in Figure 4. This is fulfilled. Therefore, we antic-
ipate that the approximative method gives some reliable
information about the entropy for each crystal structure
and about the entropy difference between the two struc-
tures. A quantitative comparison of entropic contributions
obtained with different methods in the MD simulations
will be done in near future.

The configurational entropy has not been calculated.
This should be done by using, for example, the cluster
variation method, where combinatorics is used of arrang-
ing atoms on a crystal lattice, given a particular state
of order. We have only checked that distributions of Fe
and Ni atoms in the alloy, which for a given concentra-
tion are not too different from each other, do not affect
the transformation temperature in a serious manner. The
calculated internal energy depends of course on the con-
figuration as well as the calculated vibrational entropies
and vary with concentration.

This work was supported by the Sonderforschungsbereich 166
Duisburg-Bochum.
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14. M. Schröter, H. Ebert, H. Akai, P. Entel, E. Hoffmann,

G.G. Reddy, Phys. Rev. B 52, 188 (1995).
15. V.L. Sliwko, P. Mohn, K. Schwarz, P. Blaha, J. Phys.-

Cond. Matter 8, 799 (1996).
16. P. Mohn, K. Schwarz, P. Blaha, J. Phys.-Cond. Matter 8,

817 (1996).
17. E.C. Bain, N.Y. Dunkirk, Trans. AIME 70, 25 (1924).
18. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984).
19. R. Meyer, P. Entel, J. Phys. IV Colloq. France 5, C2-123

(1995).
20. R. Meyer, P. Entel, J. Phys. IV Colloq. France 7, C5-29

(1997).
21. R. Meyer, P. Entel, Phys. Rev. B 57, 5140 (1998).
22. R. Meyer, unpublished.
23. K. Kadau, P. Entel, R. Meyer, unpublished.
24. P. Blaha, K. Schwarz, P. Dufek, R. Augustyn, WIEN95,

TU of Vienna 1995. Improved and updated UNIX ver-
sion of the original WIEN-code, published by P. Blaha, K.
Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Com-
mun. 59, 399 (1990).

25. V.L. Moruzzi, P.M. Marcus, K. Schwarz, P. Mohn, Phys.
Rev. B 34, 1784 (1986).

26. H.C. Herper, E. Hoffmann, P. Entel, J. Phys. IV Colloq.
France 7, C5-71 (1997).

27. W.A.A. Macedo, W. Keune, Phys. Rev. Lett. 61, 475
(1988).

28. A. Onodera, Y. Tsunoda, N. Kunitomi, O.A. Pringle, R.M.
Nicklow, R. Moon, Phys. Rev. B 50, 3532 (1994).
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